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ABSTRACT
Existing graph-network-based few-shot learning methods ob-
tain similarity between nodes through a convolution neural
network (CNN). However, the CNN is designed for image
data with spatial information rather than vector form node
feature. In this paper, we proposed an edge-labeling-based
directed gated graph network (DGGN) for few-shot learning,
which utilizes gated recurrent units to implicitly update the
similarity between nodes. DGGN is composed of a gated
node aggregation module and an improved gated recurrent
unit (GRU) based edge update module. Specifically, the node
update module adopts a gate mechanism using activation of
edge feature, making a learnable node aggregation process.
Besides, improved GRU cells are employed in the edge up-
date procedure to compute the similarity between nodes. Fur-
ther, this mechanism is beneficial to gradient backpropagation
through the GRU sequence across layers. Experiment results
conducted on two benchmark datasets show that our DGGN
achieves a comparable performance to the-state-of-art meth-
ods.

Index Terms— CNN, graph network, few-shot learning,
edge-labeling, GRU

1. INTRODUCTION

Deep neural networks [1, 2] based on massive labeled data
have achieved great success in recent years. However, the
process of obtaining labeled data is cumbersome. Therefore,
training a robust model with a small amount of labeled data is
an urgent issue. Few-shot learning [3, 4] aims to predict un-
labeled data (query set) based on a few labeled data (support
set).

There are three main ways to address the few-shot learn-
ing problem. The first category of few-shot learning ap-
proaches adopts a metric learning framework to minimize
the distance between the same class samples. Vinyals et al.
[5] assumed a weighted nearest neighbor classifier using an
attention mechanism. Snell et al. [6] produced a prototype
embedding through the average of each class feature. Sung
et al. [7] built a distance metric network to obtain point-wise
relations in all samples. The second category of few-shot
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approaches focused on extracting transferable knowledge
across tasks. Finn et al. [8] aimed to find the best set of
initialization parameters that will allow it to achieve good
performance with a few times gradient updates on any new
task. By simplifying [8], Nichol et al. [9] was a first-order
gradient-based meta-learning algorithm.

Since the above two kinds of methods have shown the re-
quirements of the relationship between a support set and a
query set, the third category of few-shot learning approaches
applied graph neural network (GNN) [10, 11] to further ex-
cavate the implicit relational information between samples.
Garcia et al. [12] utilized annotation information to initialize
the adjacency matrix and then updates the node information
in the graph continuously through the message passing pro-
cess. Liu et al. [13] firstly adopted a transductive setting
on graph-based few-shot learning, which using a CNN mod-
ule to compute the similarity between nodes and propagate
labels from support set to query set in the graph. To fur-
ther exploit the intra-cluster similarity and inter-cluster dis-
similarity of the nodes in graph neural network, Kim et al.
[14] built an edge-labeling graph neural network framework,
which performs well by alternating node and edge feature up-
dates. However, it is not reasonable enough to use a CNN to
measure the similarity of vector format node information in
the above methods [13, 14], and the node feature update pro-
cess [14] is also an unlearnable node feature sum procedure.

This paper propose a novel directed gated graph neu-
ral network (DGGN) based on edge annotation for few-shot
learning. As shown in Figure 1, the framework of DGGN
is composed of two parts: Node update and Edge update.
The node update process adopts a gate mechanism using the
activation of edge feature to control the aggregation of node
feature. Such a learnable aggregation approach can easily
incorporate into an end-end network. To obtain the similarity
between the nodes expressed as vectors, we propose an im-
proved GRU [15] mechanism instead of CNN. Expressly, we
set the edge feature as the hidden state and the node feature
as the input. Then, the features of the two nodes connected
by the directed edge are input into the GRU in the edge direc-
tion. Thus, the edge feature as the hidden state of the GRU is
updated. After a few DGGN layers conducted by these two
mechanisms, nodes in the graph can be classified by simple
weighted voting based on edge feature. Our contributions can
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Fig. 1. The framework of a two layers DGGN. The node update and edge update are carried out alternately, and the class
prediction of nodes is made based on the final edge features. Please refer to the text for more details.

be summarized as follows:

• The gated node update mechanism makes the node fea-
ture aggregation a learnable process, which can easily
incorporate into an end-end framework.

• The proposed improved GRU mechanism is appropri-
ate for vector form node features compared with CNNs,
and the GRU sequence throughout each layer is benefit
for gradient backpropagation.

• On few-shot image classification tasks, the proposed
method providing improved numerical performance on
two benchmark datasets.

2. METHOD

2.1. Problem definition:Few-shot classification

The goal of few-shot classification is to construct a robust
classifier when only a few labeled training samples are given.
Each few-shot classification task T contains a support set S
and a query set Q. If the support set S contains K labeled
samples for each N class, it is called N-way K-shot classifica-
tion. Specifically, given a training datasets Dtrain and a test-
ing datasets Dtest, although both Dtrain and Dtest are sampled
from one datasets D, which means they have similar distri-
bution,the labels of Dtrain and Dtest are mutually exclusive.
In the training stage, many N-way K-shot tasks are built on
Dtrain as follows:

S = {(x1, y1), (x2, y2), ..., (xN×K , yN×K)}, (1)

Q = {(xN×X+1, yN×X+1), ..., (xN×X+C , yN×X+C)}, (2)

where xi is the samples in Dtrain, yi is the corresponding label
of xi, C is the number of query samples. Then, the support set
S in each task is taken as a training set on which the model is
trained to minimize the loss of its predictions over the query
set Q. As for the testing, sampling the support sets and query
sets as the same way as the training stage and employing the
trained model to predict the query sets.The labels of the sup-
port set and test set in the training phase are both provided
for model optimization, while only the support sets labels are
provided in the test phase.This kind of training procedure is
called episode training [5, 16].

2.2. Node and edge initialization process

This section describes the node and edge initialization process
of the proposed DGGN. As shown in figure 1, all samples
in support set S and query set Q are embedded into feature
vectors through a CNN module. Thus, a directed graph is
initialized where each node represents each sample, and each
edge represents the relationship between the two connected
nodes. Here, G = (V, E ; T ) be the graph build by samples of
task T , where V = {Vi}i=1,...,T denote the nodes of the graph
and E = {Eij}i,j=1,...,T denote the edges, T = N ×K + C
is the number of all samples in the task T . vi is the feature of
node Vi and eij is the feature of edge Eij . Furthermore, we
can define the ground-truth edge label yij by node labels yi as
follows:

yij =

{
1, yi = yj,

0, yi 6= yj.
(3)

Node feature is initialized by a convolutional neural net-
work: v`=0

i = fcnn(xi; θcnn), where fcnn is the parameter set
of the CNN and ` is the number of layer. We use the CNN
with four convolution blocks for a fair comparison, which is



employed in most few-shot learning models [6, 5, 12, 13, 14].
Specifically, each convolution block contains 3 × 3 size ker-
nels, batch normalization [17] and a ReLU activation module.
Each edge feature eij = (eij1, eij2) is a two dimensional vec-
tor, which represent the intra-class similarity and inter-class
dissimilarity of the two connected nodes separately. Then,
the edge features are initialized by edge label yij as follows:

e`=0

ij =


(1, 0), yij = 1 and i, j ≤ N ×K,
(0, 1), yij = 0 and i, j ≤ N ×K,

(0.5, 0.5), otherwise.

(4)

2.3. Gated node update mechanism

Given node feature v`
i and edge feature e`

ij of layer `, node up-
date is firstly conducted based on a gated aggregating mech-
anism. Inspired by the original edge gating method [18], our
node update procedure is designed as follows:

v`+1

i = ReLU(A`v`

i +
∑
j→i

σ(C`e`

ij)�B`v`

j), (5)

where σ is the sigmoid function, A,B,C are the weight pa-
rameters and � means element-wise product. Different from
[14], we utilize the activation of edge feature as a gate to con-
trol the message passing from neighbor nodes vj to the center
node vi. Therefore, the overall aggregating process is becom-
ing learnable compared with the fixed node updating process
in EGNN.

2.4. GRU based edge update mechanism

To update the edge feature properly on the condition that node
features are vector formed, we construct a GRU sequence-
based approach as follows:

e`+1

ij = GRUseq(e`

ij,v
`

i,v
`

j), (6)

GRUseq(e`
ij ,v

`
i ,v

`
j) = GRU2(GRU1(e

`
ij ,v

`
i),v

`
j), (7)

where e`
ij the directed edge connecting the nodes from v`

i to
v`

j , and GRU represents the gated recurrent unit[15] widely
used for natural language processing tasks [19]. More con-
cretely, GRU1(e

`
ij,v

`
i) is equal to:

zi = σ(Uze
`

ij + Vzv
`

i), (8)

ri = σ(Ure
`

ij + Vrv
`

i), (9)

ẽ`

ij = tanh(Ue(e
`

ij � ri) + Vev
`

i), (10)

ê`

ij = (1− zi)� e`

ij + zi � ẽ`

ij, (11)

where ê`

ij is the updated e`
ij by the GRU cell. We treat the

edge feature e`
ij as the hidden state, and update it by feeding

the node features into the GRU. After two-node features are
feeded into the GRU sequence in the order of edge direction,

the edge feature e`
ij can extract information from these two

nodes and the relationship between the two connected nodes
is obtained.

Also, we insert a residual block [20] between layers to
ease the network degradation situation:

v`+1

i = f `

v(v
`

i, {v`

j : j → i}, e`

ij) + v`

i, (12)

e`+1

ij = f `

e (e
`

ij,v
`

i,v
`

j) + e`

ij. (13)

Algorithm 1: The process of DGGN for inference
Input: G = (V, E ; T ), where T = S ∪ Q,

S = {(xi, yi)}N×K
i=1 , Q = {xi}N×K+C

i=N×K+1

Output: {ŷi}N×K+C
i=N×K+1

1 Initialize: v`=0
i = fcnn(xi; θcnn), e

`=0
ij ,∀i, j

2 for ` = 0, ..., L− 1 do
/* Node feature update */

3 for i = 1, ..., |V | do
4 v`+1

i = ReLU(A`v`
i +

∑
j→i

σ(C`e`
ij)�B`v`

j),

5 end
/* Edge feature update */

6 for (i, j) = 1, ..., |E| do
7 e`+1

ij = GRUseq(e`
ij,v

`
i,v

`
j),

8 end
9 end
/* Query node label prediction */

10 {ŷi}N×K+C
i=N×K+1 ←WeightedVoting({yi}N×K

i=1 , {eL
ij})

2.5. Objective

After L layers of alternative node and edge updates, the node
prediction can be obtained from the final edge features: eL

ij .
As we mentioned in section 2.2, eij = (eij1, eij2) represents
the intra-class similarity and inter-class dissimilarity of the
two connected nodes separately so that the nodes can be clas-
sified by simple weighted voting with support node’s label
and final edge feature eLij1:

P (ŷi = Ck|T ) = Softmax(
∑
{j:j→i}

eLij1δ(yj = Ck)), (14)

where P (ŷi = Ck|T ) is the probability that node Vi is belong
to class Ck and yj is the label of neighbor nodes connecting to
node vi in the support set.

We adopt the binary cross-entropy loss as the DGGN’s
loss function to minimize the differences between the output
edge feature and edge label. The overall procedure is shown
in Algorithm 1.



3. EXPERIMENTS

3.1. Datasets and Setups

We evaluated our DGGN on two standard few-shot learning
datasets: miniImagenet [5] and tieredImagenet [21]. The
miniImageNet and tieredImageNet are the subsets of Ima-
geNet [22]. The miniImagenet contains 100 classes with
600 images per class, which are randomly split into 64, 16,
20 classes as training, validation and testing set,respectively.
The tieredImagenet has 608 classes divided into 351, 97, 160
classes as training, validation and testing set. The average
number of images per category in tieredImagenet was 1281.

We conducted the standard 5-way 5-shot and 5-way 1-
shot experiments on these two datasets. Considering the ef-
fectiveness of the feature updates and the avoidance of over-
smoothing issues, we adopt a three-layer DGGN model. The
proposed DGGN model was trained with Adam optimizer and
the initial learning rate was set to 0.001. Besides, We de-
cay the learning rate by 0.1 per 20000 iterations and set the
weight decay to 10−6. Our code1 was developed in Pytorch
[23] framework and run with NVIDIA Tesla V100.

Table 1. Few-shot classification performance on miniIma-
genet and tieredImagenet. Top results are highlighted.

Method
miniImagenet tieredImagenet

5-way 5-way

1-shot 5-shot 1-shot 5-shot

MatchingNet [5] 43.56 55.31 - -
ProtoNet [6] 49.42 68.2 53.34 72.69

RelationNet [7] 50.44 65.32 54.48 71.32
MAML [8] 48.70 55.31 51.67 70.30
GNN [12] 50.33 66.41 - -
TPN [13] 55.51 69.84 59.91 73.30

EGNN [14] 59.63 76.34 63.52 80.24
DGGN 60.95 78.04 63.98 81.16

3.2. Experiment Results

We compared our approach with several state-of-the-art meth-
ods, including graph-based and non-graph-based methods.
For fair comparisons, we evaluate DGGN on miniImagenet
and tieredImagenet, which is compared with other methods in
the same ConvNet4 backbone. For miniImagenet, the num-
ber of iterations is 100k with batch size = 20. In contrast,
for tieredImagenet, the iteration is doubled to 200k because
it is a larger dataset and needs more iterations to make the
model converge. As shown in Table 1, the proposed DGGN
model outperforms other existing methods and achieves state-

1The DGGN code is available on https://github.com/zpx16900/DGGN.
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Fig. 2. High-way few-shot classification performance on
miniImagenet.

of-the-art performance on both 5way-5shot and 5way-1shot
settings.

As can be seen from Table 1, graph-based method(e.g.
EGNN,DGGN) is much powerful than non-graph-based ap-
proach(e.g. ProtoNet,MAML). The results demonstrate that
graph neural network is appropriate for processing relation in-
formation. Notably, DGGN achieves higher accuracies than
EGGN, which adopts a CNN module to calculate the similari-
ties between nodes to update the edge feature. In contrast, our
DGGN employs a GRU sequence mechanism to process the
vector form node features, which is more proper than CNN.

The performance of DGGN in 10way-5shot, 10way-
1shot, and 20way-1shot situations are evaluated on miniIma-
geNet dataset, its results are shown in Figure 2. It should be
noted that our DGGN performs better than other methods in
high way scenarios. With the increasing number of support
sets, DGGN can build a bigger graph to conduct the node and
edge updating procedure and achieve higher accuracy.

4. CONCLUSION

This paper describe a DGGN model containing a gated node
aggregation module and an improved GRU based edge update
module for a few-shot classification. The node aggregation
module adopts a gate mechanism based on activation of the
edge feature, making a learnable node update process. On
the other hand, the edge update module employs an improved
GRU unit, where the gradient backpropagation benefit from
the GRU sequence throughout all layers. It is also suitable for
the GRU sequence to process the vector form node feature.
Besides, the entire network is trained end-to-end. The exper-
imental results show that our DGGN achieves a comparable
performance to the-state-of-art methods.
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